This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

A New Synthesis of 2',3'-Didehydro-3'-deoxy-3-Alkylthymidine

G. Negrón^a; B. Quiclet-Sire^b; Y. Diaz^c; R. Gaviño^c; R. Cruz^c

^a Area de Química, Universidad Autónoma Metropolitana-Azcapotzalco, México, D.F., México ^b Institut de Chimie des Substances Naturelles, C.N.R.S., Gif-sur-Yvette, France ^c Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D.F., México

To cite this Article Negrón, G. , Quiclet-Sire, B. , Diaz, Y. , Gaviño, R. and Cruz, R.(1995) 'A New Synthesis of 2',3'-Didehydro-3'-deoxy-3-Alkylthymidine', Nucleosides, Nucleotides and Nucleic Acids, 14: 7, 1539 — 1543

To link to this Article: DOI: 10.1080/15257779508009490 URL: http://dx.doi.org/10.1080/15257779508009490

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

A NEW SYNTHESIS OF 2', 3'-DIDEHYDRO-3'-DEOXY-3-ALKYLTHYMIDINE

G. Negrón*1, B. Quiclet-Sire2, Y. Diaz3, R. Gaviño3 and R. Cruz*3

Abstract: The preparation of 3-alkyl D4T derivatives has been carried out starting from the corresponding 5'-O-*t*-butyldimethylsilyl-3'-O-methanesulfonylthymidine **2** by way of deprotection-elimination and succesive alkylation reactions.

Intensive efforts are under way worldwide in the search for new therapeutic agents to be used in the treatment of acquired immunodeficiency syndrome (AIDS). In the early studies of Mitsuya and Broder¹, a class of compounds known as 2', 3'-dideoxynucleosides were found to be potent <u>in vitro</u> inhibitors of HIV replication. 3'-Azido-3'-deoxythymidine (AZT, zidovudine, Retrovir, Wellcome, 1987), 2', 3'-dideoxyinosine (DDI, didanosine, Videx, Bristol Myers Squibb, 1992) are the drugs clinically approved by the U.S. Food and Drug Administration for the treatment of AIDS; furthermore 2', 3'-Dideoxycytosine (DDC, zalcitabine, HIVID, Hoffmann La Roche, 1992) was recently introduced for limited use, and 2', 3'-didehydro-3'-deoxythymidine (D4T, Stavudine) is being evaluated in clinical trials².

On the other hand, a number of reports from several laboratories have recently appeared that show which chemical modification at the N³-position of pyrimidine nucleosides is applicable to the preparation of new nucleoside analogs possessing anti-HIV activity^{3,4}. Our own interest in the design of drug candidates against AIDS is mainly concentrated in the development of analogs of D4T substituted at the N³-position. TheN³-alkylation of protected uridine nucleosides using sodium hydride is well-documented⁵.

¹ Area de Química, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo No. 180, C. P. 02200, México, D.F., México.

² Institut de Chimie des Substances Naturelles, C.N.R.S., 91198, Gif-sur-Yvette, France.

³ Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, 04510, México D.F., México.

1540 NEGRÓN ET AL.

In the present work we describe a very useful and efficient one-pot method for the synthesis of 2',3'-didehydro-3'-deoxy-3-alkylthymidine **4** using the 5'-O-*t*-butyldimethylsilyl-3'-O-methanesulfonylthymidine **2** as starting material. We have recently

3 from the commercially available thymidine. Indeed, thymidine can be protected in one-pot procedure by treatment with *tert*-butyldimethylsilyl chloride in the presence of pyridine, followed by the addition of methanesulfonyl chloride to afford 2 in 80 % yield. In order to prepare the N³-alkylated derivatives 4a-4g, the diprotected nucleoside 2 was reacted under nitrogen a atmosphere with 3.3 molar eq. of potassium tert-butoxide in DMF at room temperature to afford 3. Succesive alkylation with 1.1 mol eq. of alkylating agents such as methyl iodide, ethyl bromide, propyl bromide, allyl bromide, isobutyl bromide, benzyl bromide and prenyl bromide added at room temperature gave the corresponding N-3 alkylated nucleosides 4a-4g in 63-91% yield (scheme 1).

Experimental

The ¹H NMR spectra were recorded on a Varian VXR-300 S or a Gemini-200 spectrometer and the chemical shift data are reported in parts per million (δ) withtetramethylsilane as internal standard, where s, dd, t, q and m designate singlet, doublet, doublet of doublets, triplet, quartet and multiplet, respectively. Infrared (IR) spectra were recorded on a Nicolet 5-SX FT IR spectrophotometer. Thin layer chromatography (TLC) was performed using Merck 60 F₂₅₄ plates and the spots were detected under UV light (254 nm). Column chromatography was performed using Kieselgel 60, 230-400 mesh ASTM type 9385. Mass spectra (MS) were recorded on a Hewlett Packard 5985 B GCMS spectrometer for chemical ionization (CI). Elemental analyses were performed by the microanalysis laboratory at the ICSN, Gif-sur Yvette, France.

General procedure.- A typical procedure for N-alkylation of 2', 3'-didehydro-3'-deoxythymidine is given by the preparation of 4f. To a solution of 5'-t-butyldimethylsilyl-3'-O-methanesulfonylthymidine (434 mg, 1.00 mmol) 2 in DMF (20 mL) was added t-BuOK (370 mg, 3.30 mmol) at 0 °C under a nitrogen atmosphere. After 5 min, the solution was allowed to warm to room temperature and stirring was continued another 25 min to yield a cloudy solution of 3. Benzyl bromide (0.13 mL, 1.10 mmol) was added through a septum and the mixture was stirred for 1 hr. Evaporation of the solvent to dryness in vacuo followed by purification of the residue by silica gel column chromatography (10 % MeOH in CH₂Cl₂) gave the monoalkyl 2', 3'-didehydro-3'-deoxy-

a: R = Methyl, b: R = ethyl, c: R = propyl, d: R = allyl, e: R = isobutyl, f: R = benzyl, g: R = prenyl

Scheme 1

3-benzylthymidine 4g (286 mg, 0.91 mmol, 91 %). Spectroscopic data for 2', 3'-didehydro-3'-deoxy-3-alkylthymidine 4a-g follow.

2', 3'-Didehydro-3'-deoxy-3-methylthymidine **4a**. Colorless solid, yield 63 %. m.p.144 °C. IR (CHCl₃) 3624, 1703, 1670, 1641, 1471, 1294, 1086 cm⁻¹; ¹H NMR (CDCl₃) δ 1.89 (d, 3H, J=1.20, 5-CH₃), 2.29 (m, 1H, J_{1/2}=4.0, OH), 3.35 (s, 3H, N-CH₃), 3.79 (dt, 1H, J=4.5, 12.0, 5'-H), 3.92 (dt, 1H, J=4.5, 12.0, 5"-H), 4.93 (m, 1H, J_{1/2}=10.0, 4'-H), 5.87 (ddd, 1H, J=6, 2.28, 1.5, 3'-H), 6.34 (dt, 1H, J=6.15, 2'-H), 7.04 (ddd, 1H, J=3.6, 2.28, 1.5, 1'-H), 7.44 (q, 1H, J=1.20, 6-H). MS: (CI) m/z 239 (MH)+, 141 (base-R+H)+. Anal. Calcd. for C₁₁H₁₄N₂O₄: C, 55.46; H, 5.92; N, 11.76. Found: C, 55.46; H, 5.79; N, 11.46.

2', 3'-Didehydro-3'-deoxy-3-ethylthymidine **4b.** Colorless solid, yield 87 %, m.p.143-144 °C. IR (CHCl₃) 3624, 1700, 1690,1640, 1468, 1351, 1087 cm⁻¹; 1 H NMR (CDCl₃) δ 1.23 (t, 3H, J=7.1, CH₂CH₃), 1.89 (d, 3H, J=1.24, 5-CH₃), 2.40 (m, 1H, J_{1/2}=4.0, OH), 3.80 (dt, 1H, J=12.0, 3.20, 5'-H), 3.94 (dt, 1H, J=12.5, 3.20, 5''-H), 4.02 (q, 2H, J=7.10, N-CH₂CH₃), 4.93 (m, 1H. J_{1/2}=10, 4'-H), 5.86 (ddd, 1H, J=6.0, 1.50, 0.60, 3'-H), 6.34 (dt, 1H, J=6.0, 1.50, 2'-H), 7.05 (ddd, 1H, J=3.70, 1.50, 0.60, 1'-H), 7.43(q, 1H, J=1.24, 6-H). MS: (CI) m/z 253 (MH)+, 155 (base-R+H)+. Anal. Calcd. for C₁₂H₁₆N₂O₄: C, 57.13; H, 6.39; N, 11.10. Found: C, 56.80; H, 6.27; N, 10.90.

1542 NEGRÓN ET AL.

2', 3'-Didehydro-3'-deoxy-3-propylthymidine **4c.** Colorless solid, yield 64 %, m.p.130-131 °C. IR (CHCl₃) 3623, 1701, 1670,1640, 1467, 1362, 1087 cm⁻¹; 1 H NMR (CDCl₃) δ 0.94 (t, 3H, J=7.50, $\underline{\text{CH}}_{3}\text{CH}_{2}$), 1.65(qt, 2H, J=7.50, 7.80 CH₃ $\underline{\text{CH}}_{2}\text{CH}_{2}$), 1.88 (d, 1H, J=1.24, 5-CH₃), 2.20 (m, 1H, J_{1/2}=4.00, OH), 3.87 (t, 2H, J=7.87, N- $\underline{\text{CH}}_{2}\text{CH}_{2}$), 3.92(ddd, 2H, J=3.10, 12.0, 5'-H, 5"-H), 4.89 (m, 1H, J_{1/2}=10, 4'-H), 5.83 (ddd, 1H, J=6.15, 0.60, 3'-H), 6.29 (dt, 1H, J=6.00, 1.70, 2'-H), 7.01 (ddd, 1H, J=3.70, 1.50, 0.60, 1'-H), 7.38 (q, 1H, J=1.24, 6H). MS: (CI) m/z 267 (MH)+, 169 (base-R+H)+, 127 (base+H)+, 126 (base). Anal. Calcd. for C₁₃H₁₈N₂O₄: C, 58.64; H, 6.81; N, 10.52. Found: C, 58.63; H, 6.58; N, 10.46.

2', 3'-Didehydro-3'-deoxy-3-allylthymidine **4d.** Colorless solid, yield 68 % m.p.131-132 °C. IR (CHCl₃) 3623, 1702, 1669,1642, 1466, 1336, 1086 cm⁻¹; 1 H NMR (CDCl₃) 8 1.90 (d, 3H, J=1.24, 5-CH₃), 3.87(ddq, 2H, J=15.0, 5.26, 3.16, 5'-H, 5"-H), 4.57(dt, 2H, J=6.0, 1.30, Hd) $^{\#}$, 4.93 (m, 1H, J_{1/2}=10.0, 4'-H), 5.19 (dq, 1H, J=10.0, 1.36, Ha) $^{\#}$, 5.28 (dq, 1H, J=1.44, 17.0, Hb) $^{\#}$, 5.86 (m, 1H, J_{1/2}=5.0, 3'-H), 5.89 (dqt,1H, J=6.0, 10.0,17.0, Hc) $^{\#}$, 6.33(dt, 1H, J=6.0, 1.6, 2'-H), 7.04 (ddd, 1H, J=3.70, 1.50, 0.60, 1'-H), 7.44 (q, 1H, J=1.24, 6-H). MS: (CI) m / z 265 (MH) $^{+}$, 167 (base-R+H) $^{+}$. Anal. Calcd. for C₁₃H₁₆N₂O₄: C, 59.08; H, 6.10; N, 10.80. Found: C, 58.81; H, 5.93; N, 11.15.

2', 3'-Didehydro-3'-deoxy-3-isobutylthymidine **4e.** Colorless oil, yield 64 %. IR (CHCl₃) 3622, 3599, 1797, 1766, 1705, 1672, 1643, 1465, 1086 cm⁻¹; ¹H NMR (CDCl₃) δ 0.92 (d, 6H, J=6.60, (CH₃)₂CH), 1.89 (d, 1H, J=1.24, 5-CH₃), 2.17 (septet, 1H, J=6.60, CH(CH₃)₂), 2.18 (m, 1H, J_{1/2}=3.00, OH), 3.79 (d, 2H, N-CH₂CH), 3.80 (dd, 1H, J=3.10, 12.0, 5'-H), 3.93 (dd, 1H, J=3.10, 12.0, 5''-H), 4.93 (m, 1H, J_{1/2}=10.0, 4'-H), 5.87 (ddd, 1H, J=6.00, 1.50, 0.60, 3'-H), 6.33 (dt, 1H, J=6.00, 1.50, 2'-H), 7.04 (ddd, 1H, J=3.70, 1.50, 0.60, 1'-H), 7.47 (q, 1H, 1.24, 6-H). MS: (CI) m/z 281 (MH)⁺, 183 (base-R+H)⁺, 127 (base+H)⁺.

2′, 3′-Didehydro-3′-deoxy-3-benzylthymidine **4f.** Colorless oil, yield 91 %. IR (CHCl₃) 3623, 1702, 1669, 1642, 1465, 1351, 1087 cm⁻¹; ¹H NMR (CDCl₃) δ 1.88 (d, 1H, J=1.20, 5-CH₃), 2.40 (m, 1H, OH), 3.76 (dt, 1H, J=12.2, 3.40, 5′-H), 3.89 (dt, 1H, J=12.2, 3.40, 5″-H), 4.90 (m, 1H, J_{1/2}=10.0, 4′-H), 5.13 (d, 2H, J=3.2, <u>CH₂Ph</u>), 5.83 (ddd, 1H, J=1.7, 6.0, 2.28, 3′-H), 6.30 (dt, 1H, J=6.0, 1.7, 2′-H), 7.04 (ddd, 1H, J=3.40, 1.70, 0.60, 1′-H), 7.35 (m, 6H, <u>Ph</u>CH₂, 6-H). MS: (CI) m/z 315 (MH)⁺, 217 (base-R+ H)⁺, 216 (base-R).

2', 3'-Didehydro-3'-deoxy-3-prenylthymidine **4g.** Colorless solid, yield 62 %, m.p.100-101 °C. IR (CHCl₃) 3623, 1797, 1703, 1671, 1641, 1465, 1086 cm⁻¹; ¹H NMR (CDCl₃) δ 1.70 (d, 3H, J=0.60, (CH₃)₂C=CH), 1.82 (d, 3H, J=0.60, (CH₃)₂C=CH), 1.90 (d, 3H, J=1.24, 5-CH₃), 2.48 (m, 1H, J_{1/2}=6.0, OH), 3.79 (dd, 1H, J=3.0, 12.0, 5'-H), 3.92 (dd, 1H, J=3.0, 12.0, 5''-H), 4.54 (d, 2H, J=7.0, C=CHCH₂-N), 4.92 (m, 1H, J_{1/2}=10.0, 4'-H), 5.23 (tq, 1H, J=7.0, 0.60, (CH₃)₂C=CHCH₂), 5.85 (ddd, 1H, J=6.0, 1.80, 0.60, 3'-H), 6.33 (dt, 1H, J=6.0, 1.80, 2'-H), 7.05 (ddd, 1H, J=3.70, 1.80, 0.60, 1'-H), 7.25 (q, 1H, J=1.24, 6-H). MS: (CI) m/z 293 (MH)+, 195 (base-R+ H)+, 127 (base+ H)+.

ACKNOWLEDGMENTS. The authors are indebted to Consejo Nacional de Ciencia y Tecnologia (CONACyT) for financial support (Proyect No 1348-E9206) and Messrs. F. Pérez and L. Velasco for their technical assistance.

REFERENCES

- 1. Mitsuya, H.; Broder, S. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 1911.
- Enders, D.; Jegelka, U.; Drucker, B. Angew. Chem. Int. Ed. Engl. 1993, 32, 423. Garg,
 N.; Plavec, J.; Chattopadhyaya. Tetrahedron, 1993, 49, 5189. Huryn, D.; Okabe, M.
 Chem. Rev. 1992, 92, 1745. Johnson, M.; Hoth, D. Science 1993, 260, 1286. Reese.C. B.;
 Chamakura, V. J. Chem. Soc. Perkin Trans I, 1994, 189.
- 3. Kitade, Y.; Suzuki, A.; Hirota, K.; Maki, Y.; Nakane, H.; Ono, K.; Baba, M.; Shigeta,
- S. Chem. Pharm. Bull. 1992, 40, 920.
- 4. Goulaouic, C.; Adams, D.; Chiaroni, A.; Riche, C.; Grierson, D. J. Org. Chem. **1993**, 58, 3030.
- 5. Seliger H.; Cramer F.; Angew. Chem. Int. Ed. Engl. 1969, 82, 609.
- 6. Negrón, G.; Díaz, Y.; Cruz, R.; Islas, G.; Quiclet-Sire, B. Nucleosides & Nucleotides. 1994, 13, 1011.

Received March 13, 1995 Accepted April 21, 1995